Changkyu Choi introducing his Thesis.
Image:
Harald Lykke Joakimsen

Changkyu Choi introducing his Thesis.

High Quality PhD defense in the Visual Intelligence research centre

Changkyu Choi defended his PhD thesis “Advancing Deep Learning for Marine Environment Monitoring” on June 9th 2023 at UiT The Arctic University of Norway.

High Quality PhD defense in the Visual Intelligence research centre

The key objectives of Changkyu Choi thesis is advancing both deep learning and marine environment monitoring, this by addressing the challenges linked to limited annotated data. Choi has develop a new explainable deep learning method that generates explanations tailored to the needs and preferences of the  users and evaluated these in the  context of marine environment monitoring.

Changkyu Choi (center) with comitee and advisors. (Photo Harald Lykke Joakimsen)

Evaluation Committee

  • Associate Prof. Vedrana Dahl, Department of Applied Mathematics and Computer Science, Technical University of Denmark (1. Opponent)
  • Prof. Morten Goodwin, Department of Information and communication technology, University of Agder (2. Opponent)
  • Associate Prof. Benjamin Ricaud, Department of Physics and Technology, UiT (internal member and leader of the committee)

Supervisors

  • Professor Robert Jenssen, Department of Physics and Technology, UiT (main supervisor)
  • Associate Prof. Michael C. Kampffmeyer, Department of Physics and Technology, UiT (co-supervisor)
  • Senior Researcher Arnt-Børre Salberg, Norwegian Computing Centre (co-supervisor)

Summary of thesis

Marine environment monitoring has become increasingly significant due to the excessive exploitation of oceans, which detrimentally impacts ecosystems. Deep learning provides an effective monitoring approach by automating the analysis of vast amounts of observed image data, enabling stakeholders to make informed decisions regarding fishing quotas or conservation efforts. The success of deep learning is often attributed to its capacity to extract relevant features from data, without the need for handcrafted rules or heuristics. However, this capability is not without limitations, as the intricate feature extraction process of deep learning-based systems poses fundamental challenges. A lack of annotated data presents an inherent challenge for deep learning. The widespread success of deep learning has primarily relied on the ample availability of annotated data, while deep learning models encounter difficulties when learning from limited annotations. However, obtaining annotated data is expensive, particularly in the context of marine environment monitoring, as it is often a manual process demanding the expertise of domain specialists. Another challenge of deep learning is a lack of explainability. The black-box nature of deep learning models can make it difficult to understand how they arrive at their decisions. This hinders their adoption in critical decision-making processes, as stakeholders may be hesitant to trust models whose decision-making rationale is not transparent or interpretable. To address the challenges and further advance deep learning methodologies, this thesis proposes three novel deep learning methods, highlighting marine environment monitoring as an application domain.

Link to thesis in Munin

Acknowledgement

The PhD project was a collaboration between Institute of Marine Research, The Norwegian computing center and UiT The Arctic University of Norway. The project was funded by COGMAR and Visual Intelligence.

Latest news

Dagens Medisin: I 2025 vil KI-samarbeidet virkelig komme helsepersonell til gode

December 18, 2024

In a Dagens Medisin op-ed, SPKI director Karl Øyvind Mikalsen, Kristine Bø, Bjorn Anton Graff and Kurt Vanvik discuss how interregional collaborations in Norway now contributes to the implementation of AI radiology solutions across the Norwegian health regions

Centre director Robert Jenssen joins prestigious scientific advisory committee at leading research institute

December 17, 2024

Jenssen has established several important collaborations between Visual Intelligence and international research environments within artificial intelligence. He has now joined the scientific advisory committee at Europe's most prominent research centre within intelligent systems.

Four Innovative Years of SFI Visual Intelligence!

December 15, 2024

2024 marks the research centre's fourth year of researching the next generation of deep learning methodology for extracting knowledge from complex image data. We look back at various innovation highlights achieved in the first half of Visual Intelligence's run.

Successful PhD defense by Rwiddhi Chakraborty

December 13, 2024

Congratulations to Rwiddhi Chakraborty for successfully defending his PhD thesis and achieving the PhD degree in Science at UiT The Arctic University of Norway on December 13th 2024.

Kunstig intelligens som forklarer hva den tenker

November 15, 2024

Professor Michael Kampffmeyer gave a presentation titled "Kunstig intelligens som forklarer hva den tenker" as part of a Norwegian Centre for E-Health Research Webinar (Norwegian dialogue).

16 EUGLOH mobility scholarships for the NLDL 2025 Winter School

October 31, 2024

EUGLOH students from partner institutions under the EUGLOH alliance can now apply for an exclusive mobility scholarship for the NLDL 2025 Winter School which covers travel, accommodation, and sustenance for successful applicants.

Visual Intelligence at Inspirasjonsdagen 2024

October 29, 2024

Visual Intelligence researchers represented the centre during Inspirasjonsdagen 2024. The event aimed to stimulate high school students' interest and curiosity for STEM and healthcare-related study programmes at UiT The Arctic University of Norway.

Insightful student summer projects on machine learning at UiO

October 16, 2024

Our summer students have worked on projects related to fatigue and stress recognition with machine learning as their first research experience. Their results were presented at Georg Sverdrups hus at University of Oslo on October 16th 2024.

Visual Intelligence research talk at the Pioneer Centre for AI

October 15, 2024

PhD candidate Rwiddhi Chakraborty recently gave an invited research talk titled "Perspectives on Multimodal Reasoning" at the Pioneer Centre for AI at University of Copenhagen.

Visual Intelligence represented at Frampeik 2024

October 14, 2024

Visual Intelligence was represented at Frampeik 2024 by associate professor Elisabeth Wetzer. The event gathered student researchers at Verdensteatret in Tromsø for discussions around AI-related topics.

Register for NLDL 2025!

October 4, 2024

Registration for the Northern Lights Deep Learning Conference 2025 is now open. The general deadline for registration is January 1st 2025.

Visual Intelligence at Forskningsdagene 2024

September 30, 2024

Visual Intelligence researchers participated in various dissemination activities throughout Forskningsdagene 2024. The activities aimed to disseminate general knowledge about deep learning and Visual Intelligence's research activities to the general public.

Another successful Visual Intelligence Days!

September 26, 2024

93 people from across the Visual Intelligence (VI) consortium gathered at Quality Airport Hotel Gardermoen for Visual Intelligence Days 2024, 24th to 25th of September.

Successful PhD defense by Ghadi Al Hajj

September 19, 2024

Congratulations to Ghadi Al Hajj for successfully defending his PhD thesis and achieving the degree of Philosophiae Doctor at the University of Oslo on September 16th 2024!

Nordlys: Klar med KI-utstilling

September 18, 2024

Kommende søndag er det åpen dag på Nordnorsk vitensenter. Der lanseres vitensenteret siste nyvinning, en interaktiv utstilling basert på kunstig intelligens (KI).