Context and dependencies

Background

The strength of machine learning methods is the ability to learn from data rather than using predefined models. For complex data there is however a need to integrate the best of these two worlds to enable integration of physical or geometrical models, dependencies, and prior knowledge, as well as the exploitation of multiple complex image modalities simultaneously.

Challenges

Current deep learning systems for image analysis depend on individual pixel information, capturing dependencies solely via the convolution neighborhood.

This means that the ability to incorporate context and prior knowledge, e.g. about topology or boundaries, is limited. The ability to conform to physical models, and principles governing the image data generation and its properties is also limited, including modelling of temporal dependencies and processes. In order to make deep learning based computer vision systems ubiquitous and applicable also for complex, sparsely labelled image data, there is a need for visual intelligence that can easily be adapted to new, non-standard data sources with few labelled training samples.

Main objective

To develop new methodology to exploiting context, dependencies and prior knowledge in deep learning.

Highlighted publications

Understanding Deep Learning via Generalization and Optimzation Analysis for Accenerated SGD
November 15, 2024
We provide a theoretical understanding on the generalization error of momentum-based accelerated variants of stochastic gradient descent.
Visual Data Diagnosis and Debiasing with Concept Graphs
October 17, 2024
We propose ConBias, a bias diagnosis and debiasing pipeline for visual datasets.
Reinventing Self-Supervised Learning: The Magic of Memory in AI Training
October 17, 2024
MaSSL is a novel approach to self-supervised learning that enhances training stability and efficiency.