The Information plane can be used to gain insight and theoretical understanding of neural networks.

Image:

Opening the black box of AI

Although Deep Neural Networks (DNNs) are at the core of most state–of–the art systems in computer vision, the theoretical understanding and explainability possibilities of such networks is still not at a satisfactory level.

To a large degree, our user partner’s applications involve imaging the unseen – the inside of the human body, the sea, and the surface of the earth seen from space independent of daylight and weather conditions. Impact of innovative technology for users depends on trust. A limitation of deep learning models is that there is no generally accepted solution for how to open the “black-box” of the deep network to provide explainable decisions which can be relied on to be trustworthy.

Visual Intelligence aims at developing deep learning models with built-in robustness to data domain shift that also offers a high-level explainability.

Video

Further reading

Detection of sea mammals from aerial imagery
December 18, 2020
Better solutions are needed to estimate the populations of sea mammals, such as breeding seals, from aerial images of the sea ice.
Detection and classification of fish species from acoustic data
March 1, 2021
We collaborate with the Institute of Marine Research (IMR) to develop models and applications to detect and classify fish from echosounders.
Modelling continuity in seismic data
January 19, 2021
Visual intelligence is collaborating with Equinor to develop models that can exploit seismicdata and model the continuity of the subsurface.